876 research outputs found

    Analysis of Competition in Soil among 2,4-Dichlorophenoxyacetic Acid-Degrading Bacteria

    Get PDF
    Competition among indigenous and inoculated 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was studied in a native Kansas prairie soil following 2,4-D additions. The soil was inoculated with four different 2,4-D-degrading strains at densities of 10(3) cells per g of soil; the organisms used were Pseudomonas cepacia DBO1(pJP4) and three Michigan soil isolates, strain 745, Sphingomonas paucimobilis 1443, and Pseudomonas pickettii 712. Following 2,4-D additions, total soil DNA was extracted and analyzed on Southern blots by using a tfdA gene probe which detected three of the strains and another probe that detected the fourth strain, S. paucimobilis 1443, which belongs to a different class of 2,4-D degraders. P. cepacia DBO1(pJP4), a constructed strain, outcompeted the other added strains and the indigenous 2,4-D-degrading populations. The S. paucimobilis population was the secondary dominant population, and strain 745 and P. pickettii were not detected. Relative fitness coefficients determined in axenic broth cultures predicted the outcome of competition in soil for some but not all strains. Lag time was shown to be a principal determinant of competitiveness among the strains, but the lag times were significantly reduced in mixed broth cultures, which changed the competitive outcome. Plasmids containing the genes for the 2,4-D pathway were important determinants of competitiveness since plasmid pKA4 in P. cepacia DBO1 resulted in the slower growth characteristic of its original host, P. pickettii, rather than the rapid growth observed when this strain harbors pJP4

    Use of Gene Probes to Aid in Recovery and Identification of Functionally Dominant 2,4-Dichlorophenoxyacetic Acid-Degrading Populations in Soil

    Get PDF
    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to soils in microcosms, and degradation was monitored after each of five repeated additions. Total DNAs were isolated from soil bacterial communities after each 2,4-D treatment. The DNA samples were analyzed on slot blots and Southern blots by using a tfdA gene probe subcloned from plasmid pJP4 and a Spa probe derived from a different 2,4-D-degrading isolate, a Sphingomonas paucimobilis strain. 2,4-D applied to soil was quickly degraded by indigenous microbial populations. As determined by slot blot analyses of DNA from a Michigan soil, the increase in hybridization signal in response to 2,4-D treatments was greater with the Spa probe than with the tfdA probe. In contrast, the DNA from a Saskatchewan soil exhibited an increase in hybridization signal with the tfdA probe. This indicated that a population with 2,4-D-degradative gene sequences different from the tfdA gene sequence was dominant in the Michigan site, but not in the Saskatchewan site. A Southern blot analysis of DNA from Michigan soil showed that the dominant 2,4-D-degrading population was S. paucimobilis 1443. A less dominant 2,4-D-degrading population was detected with the tfdA probe; further analysis revealed that this population was a Pseudomonas pickettii 712. These gene probe analyses revealed that an important population carrying out 2,4-D degradation was not detected when the canonical tfdA gene probe was used. After a series of new strains were isolated, we identified a probe to detect and identify the dominant members of this new group

    Genetic and Phenotypic Diversity of 2,4-Dichlorophenoxyacetic Acid (2,4-D)-Degrading Bacteria Isolated from 2,4-D-Treated Field Soils

    Get PDF
    Forty-seven numerically dominant 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria were isolated at different times from 1989 through 1992 from eight agricultural plots (3.6 by 9.1 m) which were either not treated with 2,4-D or treated with 2,4-D at three different concentrations. Isolates were obtained from the most dilute positive most-probable-number tubes inoculated with soil samples from the different plots on seven sampling dates over the 3-year period. The isolates were compared by using fatty acid methyl ester (FAME) profiles, chromosomal patterns obtained by PCR amplification of repetitive extragenic palindromic (REP) sequences, and hybridization patterns obtained with probes for the tfd genes of plasmid pJP4 and a probe (Spa probe) that detects a distinctly different 2,4-D-degrading isolate, Sphingomonas paucimobilis (formerly Pseudomonas paucimobilis). A total of 57% of the isolates were identified to the species level by the FAME analysis, and these isolates were strains of Sphingomonas, Pseudomonas, or Alcaligenes species. Hybridization analysis revealed four groups. Group I strains, which exhibited sequence homology with tfdA, -B, -C, and -D genes, were rather diverse, as determined by both the FAME analysis and the REP-PCR analysis. Group II, which exhibited homology only with the tfdA4 gene, was a small group and was probably a subset of group I. All group I and II strains had plasmids. Hybridization analysis revealed that the tfd genes were located on plasmids in 75% of these strains and on the chromosome or a large plasmid in the other 25% of the strains. One strain exhibited tfdA and -B hybridization associated with a plasmid band, while tfdC and -D hybridized with the chromosomal band area. The group III strains exhibited no detectable homology to tfd genes but hybridized to the Spa probe. The members of this group were tightly clustered as determined by both the FAME analysis and the REP-PCR analysis, were distinctly different from group I strains as determined by the FAME analysis, and had very few plasmids; this group contained more of the 47 isolates than any other group. The group III strains were identified as S. paucimobilis. The group IV strains, which hybridized to neither the tfd probe nor the Spa probe, were as diverse as the group I strains as determined by the FAME and REP-PCR analyses. Most of group IV strains could not be identified by the FAME analysis. Strains belonging to groups I and III were more frequently recovered from soils that had greater field exposure to 2,4-D, suggesting that they were the best competitors for 2,4-D under field conditions. The selection regimen which we used led to two successful but dissimilar groups; the members of one group were similar at the plasmid level but not at the organism level, and the members of the other group were similar at the organism level. Since the members of the latter group are ecologically successful and degradative genes unlike tfd genes, they deserve more attention

    DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes

    Get PDF
    DNA microarrays constructed with full length ORFs from Shewanella oneidensis, MR-1, were hybridized with genomic DNA from nine other Shewanella species and Escherichia coli K-12. This approach enabled visualization of relationships between organisms by comparing individual ORF hybridizations to 164 genes and is further amenable to high-density high-throughput analyses of complete microbial genomes. Conserved genes (arcA and ATP synthase) were identified among all species investigated. The mtr operon, which is involved in iron reduction, was poorly conserved among other known metal-reducing Shewanella species. Results were most informative for closely related organisms with small subunit rRNA sequence similarities greater than 93% and gyrB sequence similarities greater than 80%. At this level of relatedness, the similarity between hybridization profiles was strongly correlated with sequence divergence in the gyrB gene. Results revealed that two strains of S. oneidensis (MR-1 and DLM7) were nearly identical, with only 3% of the ORFs hybridizing poorly, in contrast to hybridizations with Shewanella putrefaciens, formerly considered to be the same species as MR-1, in which 63% of the ORFs hybridized poorly (log ratios below −0.75). Genomic hybridizations showed that genes in operons had consistent levels of hybridization across an operon in comparison to a randomly sampled data set, suggesting that similar applications will be informative for identification of horizontally acquired genes. The full value of microbial genomic hybridizations lies in providing the ability to understand and display specific differences between closely related organisms providing a window into understanding microheterogeneity, bacterial speciation, and taxonomic relationships

    Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors

    Full text link
    The photoluminescence decay in amorphous semiconductors is described by power law tdeltat^{-delta} at long times. The power-law decay of photoluminescence at long times is commonly observed but recent experiments have revealed that the exponent, deltasim1.21.3delta sim 1.2-1.3, is smaller than the value 1.5 predicted from a geminate recombination model assuming normal diffusion. Transient currents observed in the time-of-flight experiments are highly dispersive characterized by the disorder parameter alphaalpha smaller than 1. Geminate recombination rate should be influenced by the dispersive transport of charge carriers. In this paper we derive the simple relation, delta=1+alpha/2delta = 1+ alpha/2 . Not only the exponent but also the amplitude of the decay calculated in this study is consistent with measured photoluminescence in a-Si:H.Comment: 18pages. Submitted for the publication in Phys. Rev.

    Genome sequences of Burkholderia sp. Strains CCGE1002 and H160, isolated from legume nodules in Mexico and Brazil.

    Get PDF
    The genome sequences of Burkholderia sp. strains CCGE1002 from Mexico and H160 from Brazil, isolated from legume nodules, are reported. Their gene contents in relation to plant-microbe interactions and xenobiotic degradation are discussed
    corecore